Impact of Software Modeling on the Accuracy of Perfusion MRI in Glioma.

نویسندگان

  • L S Hu
  • Z Kelm
  • P Korfiatis
  • A C Dueck
  • C Elrod
  • B M Ellingson
  • T J Kaufmann
  • J M Eschbacher
  • J P Karis
  • K Smith
  • P Nakaji
  • D Brinkman
  • D Pafundi
  • L C Baxter
  • B J Erickson
چکیده

BACKGROUND AND PURPOSE Relative cerebral blood volume, as measured by T2*-weighted dynamic susceptibility-weighted contrast-enhanced MRI, represents the most robust and widely used perfusion MR imaging metric in neuro-oncology. Our aim was to determine whether differences in modeling implementation will impact the correction of leakage effects (from blood-brain barrier disruption) and the accuracy of relative CBV calculations as measured on T2*-weighted dynamic susceptibility-weighted contrast-enhanced MR imaging at 3T field strength. MATERIALS AND METHODS This study included 52 patients with glioma undergoing DSC MR imaging. Thirty-six patients underwent both non-preload dose- and preload dose-corrected DSC acquisitions, with 16 patients undergoing preload dose-corrected acquisitions only. For each acquisition, we generated 2 sets of relative CBV metrics by using 2 separate, widely published, FDA-approved commercial software packages: IB Neuro and nordicICE. We calculated 4 relative CBV metrics within tumor volumes: mean relative CBV, mode relative CBV, percentage of voxels with relative CBV > 1.75, and percentage of voxels with relative CBV > 1.0 (fractional tumor burden). We determined Pearson (r) and Spearman (ρ) correlations between non-preload dose- and preload dose-corrected metrics. In a subset of patients with recurrent glioblastoma (n = 25), we determined receiver operating characteristic area under the curve for fractional tumor burden accuracy to predict the tissue diagnosis of tumor recurrence versus posttreatment effect. We also determined correlations between rCBV and microvessel area from stereotactic biopsies (n = 29) in 12 patients. RESULTS With IB Neuro, relative CBV metrics correlated highly between non-preload dose- and preload dose-corrected conditions for fractional tumor burden (r = 0.96, ρ = 0.94), percentage > 1.75 (r = 0.93, ρ = 0.91), mean (r = 0.87, ρ = 0.86), and mode (r = 0.78, ρ = 0.76). These correlations dropped substantially with nordicICE. With fractional tumor burden, IB Neuro was more accurate than nordicICE in diagnosing tumor versus posttreatment effect (area under the curve = 0.85 versus 0.67) (P < .01). The highest relative CBV-microvessel area correlations required preload dose and IB Neuro (r = 0.64, ρ = 0.58, P = .001). CONCLUSIONS Different implementations of perfusion MR imaging software modeling can impact the accuracy of leakage correction, relative CBV calculation, and correlations with histologic benchmarks.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The role of relative cerebral blood volume obtained from Perfusion Weighted Imaging-MRI in glioma tumor grading before surgery

Introduction: Glioma is the most common type of brain malignancy among adults. Treatment for this type of tumor involves surgery, radiotherapy, and in higher grades, including chemotherapy. The precise grading of the tumor is critical for treatment planning and prognosis determining. Considering the possibility of problems such as errors in tissue sampling during surgery, as we...

متن کامل

An Efficient Framework for Accurate Arterial Input Selection in DSC-MRI of Glioma Brain Tumors

Introduction: Automatic arterial input function (AIF) selection has an essential role in quantification of cerebral perfusion parameters. The purpose of this study is to develop an optimal automatic method for AIF determination in dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) of glioma brain tumors by using a new preprocessing method.Material and Methods: For this study, ...

متن کامل

Evaluation the function of Sanandaj Tohid radiotherapy center in the treatment of glioma tumors using MRI during 2009-2016

Introduction: Glioma is the most common type of primary brain tumor that originates from glial tissues. These types of tumors have a high degree of malignancy and poor prognosis and low survival rates. The evaluation response to treatment is essential to decide whether present treatment is adequate or need for alternative therapy. The aim of this study was to evaluate the resp...

متن کامل

A Two-Dimensional Convolutional Neural Network for Brain Tumor Detection From MRI

Aims: Cancerous brain tumors are among the most dangerous diseases that lower the quality of life of people for many years. Their detection in the early stages paves the way for the proper treatment. The present study aimed to present a two-dimensional Convolutional Neural Network (CNN) for detecting brain tumors under Magnetic Resonance Imaging (MRI) using the deep learning method. Methods & ...

متن کامل

O 24: Functional Role of The K2p Potassium Channel Task-3 in A Syngeneic Murine Glioma Model

To investigate the effects of the two-pore-domain potassium (K2P) channel TASK-3 in a syngeneic murine model for malignant glioma. Malignant or high-grade glioma (WHO grade III and IV) are the most common and most aggressive primary brain tumors in adults. Despite aggressive multimodal therapy, the outcome of patients with malignant glioma remains poor. However, recent phase I and II trials hav...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • AJNR. American journal of neuroradiology

دوره 36 12  شماره 

صفحات  -

تاریخ انتشار 2015